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We study the effect of the driving force on Brownian motion of a point particle in a tube formed by
identical spherical compartments, which create periodic entropy potential for the motion along the
tube axis. The focus is on �i� the effective mobility and diffusion coefficient of the particle as
functions of the driving force, �ii� localization of the particle in the central part of the tube induced
by the driving force, and �iii� transit time of the particle between the openings connecting
neighboring compartments. Some of the results at very small and large driving force are obtained
analytically, while the majority of the results are obtained from Brownian dynamics simulations.
© 2010 American Institute of Physics. �doi:10.1063/1.3489375�

I. INTRODUCTION

In many cases, the motion of Brownian particles occurs
in the presence of geometric constraints. When the con-
straints are periodic, say in the x-direction, they lead to a
slowdown of the particle motion in this direction compared
to that in space with no constraints. This happens because of
the periodic entropy wells and barriers created by the con-
straints. This circle of questions has been actively studied in
recent years1–10 because geometric constraints are ubiquitous
in nature and technology. The present paper is focused on the
effects due to periodic constraints when motion of a point
Brownian particle occurs in a tube formed by identical
spherical compartments connected by openings through
which the particle can go from one compartment to the other
�Fig. 1�.

A specific feature of such a tube is that it provides an
example of Brownian motion in periodic entropy potential
when one can find the effective diffusion coefficient of the
particle analytically. This can be done at both small5�a�,5�b�

and moderate-to-large5�c� openings. The patterns of the par-
ticle motion in the two cases are quite different. The distinc-
tion is due to the difference in the heights of the entropy
barriers �Fig. 1�. When the openings are small, and the en-
tropy barriers are high, the time required for the particle to
find an opening is much larger than the characteristic equili-
bration time in the compartment with “closed” openings.
One can use this circumstance to map the particle motion
onto a continuous-time nearest-neighbor random walk
among the centers of connected compartments.5�a�,5�b� Then
one can find the effective diffusion coefficient using well-
known results of the random walk theory.

At moderate-to-large openings, one can find the effective
diffusion coefficient using a different approach, which is
based on the reduction to an effective one-dimensional de-
scription in terms of the generalized Fick–Jacobs equation.1,2

In our case, this equation is the Smoluchowski equation with

periodic entropy potential and position-dependent diffusion
coefficient. Starting with this equation, one can find the ef-
fective diffusion coefficient5�c� by means of the Lifson–
Jackson formula.11 A good agreement between the effective
diffusion coefficients found in Brownian dynamics simula-
tions and the two theoretical predictions has been
demonstrated.5�c�

Both approaches mentioned above fail in the presence of
an external driving force. Therefore, in the present paper, we
study how the driving force affects motion of Brownian par-
ticles in tubes formed by spherical compartments numeri-
cally using Brownian dynamics simulations. Specifically, we
study the effective mobility and diffusion coefficient of the
particle as functions on the driving force. In addition, we
show that the particle distribution over the tube cross-section
becomes highly nonuniform at large driving force, namely,
the particle is mainly localized in the cylinder connecting the
openings �Fig. 1�c��. Variation of the distribution over the
tube cross-section from uniform to strongly localized, in-
duced by the driving force is discussed in detail.

Another quantity of our interest is the transit time of the
particle between neighboring openings. The transit time is a
random variable. We study the first four moments of its dis-
tribution as functions of the driving force. Using these mo-
ments we show that as the driving force tends to infinity, the
probability density of the transit time tends to the delta-
function centered at the mean transit time. Such a delta func-
tion distribution of the transit time is inherent in biased dif-
fusion in a tube of constant diameter at sufficiently large
driving force.

Numerical studies are carried out at three values of the
opening radius a and, hence, the compartment length, l, l
=2�R2−a2, which is identical to the tube period, where R is
the compartment radius, namely, a /R=0.5,0.3,0.1 and cor-
respondingly l /R�1.72,1.91,1.99. Each tube can be char-
acterized by the height of the entropy barrier measured in the
thermal energy units, ��U=�U / �kBT�=ln�Amax /Amin�,
where kB and T are the Boltzmann constant and the absolute
temperature while Amax=�R2 and Amin=�a2 are the maxi-a�Electronic mail: dll@xanum.uam.mx.
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mum and minimum values of the tube cross-section area. In
our three cases the dimensionless heights of the entropy bar-
riers, respectively, are ��U=2 ln�R /a��1.4,2.4,4.6. Thus,
the entropy barrier is relatively high at a /R=0.1 and low at
a /R=0.5 �Fig. 1�. Conditional boundary separating small
and moderate-to-large openings �high and moderate-to-low
entropy barriers� corresponds to a /R=0.2. It was shown12�a�

that the particle survival probability in a spherical cavity of
radius R with a circular absorbing spot of radius a on the
cavity wall decays as a single exponential when a /R�0.2,
while at larger values of the spot radius the decay becomes
multiexponential. �One can find rigorous analysis of the
problem based on sophisticated asymptotic methods in Refs.
12�b�–12�e�.�

The present paper is a continuation of the study initiated
in our recent Communication.5�h� The Communication is fo-
cused on the comparison of the dependences of the effective

mobility and diffusion coefficient on the driving force in
tubes formed by identical compartments of different shapes,
spherical and cylindrical. �A tube formed by cylindrical com-
partments is a cylindrical tube separated into compartments
by infinitely thin periodic partitions containing circular open-
ings in their centers, through which the particle can go from
one compartment to the other.� For comparison, we chose the
tubes with close parameters of the compartments, namely,
the radii of the cylindrical and spherical compartments were
identical, as well as the radii of the connecting openings,
a /R=0.3, and the difference in the compartment lengths was
less than 5%, l /R�1.91 and 2 in the tubes formed by spheri-
cal and cylindrical compartments, respectively. One of the
main results of the Communication is a demonstration of the
fact that the dependences are qualitatively different although
the parameters of the compartments are close.

The outline of the present paper is as follows. Depen-
dences of the effective mobility and diffusion coefficient on
the driving force obtained from Brownian dynamics simula-
tions are discussed in Sec. II. In this section, we also discuss
the localization of the particle in the cylinder connecting the
openings induced by the driving force. The transit time be-
tween neighboring openings is discussed in Sec. III. Some
concluding remarks are given in Sec. IV.

II. EFFECTIVE MOBILITY AND DIFFUSION
COEFFICIENT

Dependences of the effective mobility and diffusion co-
efficient on the driving force F, �eff�F�, and Deff�F�, respec-
tively, were obtained from Brownian dynamics simulations
carried out at the three values of the opening radius, a /R
=0.5,0.3,0.1. �The simulation details can be found in Ref.
5�h�.� Using the particle mobility �0 and diffusion coefficient
D0 in a tube of constant diameter as scaling factors, we pre-
sented the ratios �eff�F� /�0 and Deff�F� /D0 in Figs. 2�a� and
2�b�. The presence of periodic entropy barriers slows down
the transitions between neighboring compartments. This is
the reason why the effective mobility and diffusion coeffi-
cient are smaller than �0 and D0 at small F. The higher is the
entropy barrier, the stronger is the effect.

The driving force suppresses the slowdown due to the
entropy barriers. As F→�, the effective mobility and diffu-
sion coefficient tend to �0 and D0, respectively. This happens
because in this limiting case the particle spends all the time
in the cylinder connecting the openings shown in Fig. 1�c�
�see below for more details�. Thus, the particle effectively
moves in a tube of constant diameter where its mobility and
diffusion coefficient are equal to �0 and D0 independently of
the driving force. As shown in Fig. 2�a�, effective mobilities
monotonically increase from �eff�0� to �0 as F goes from
zero to infinity. Dependences Deff�F� shown in Fig. 2�b� are
more complex. Functions Deff�F� have maximums and ap-
proach their large-F limiting value D0 from above. Again,
the higher is the entropy barrier �the smaller is the opening�,
the stronger is the effect.

A similar behavior of the effective mobility and diffu-
sion coefficient has been reported in the literature on Brown-
ian motion in a one-dimensional regular �nonentropy� peri-
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FIG. 1. Schematic representation of tubes formed by identical spherical
compartments and corresponding dimensionless entropy potentials. The ra-
dii of the connecting openings are 0.1R in panel �a� and 0.5R in panel �b�.
Respectively, the dimensionless the entropy barriers are 4.6 and 1.4. In panel
�c� we show the cylinder connecting the openings, in which the particle is
localized when the driving force is large enough.
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odic potential13 as well as in periodic entropy potentials in
quasi-two-dimensional systems �slits of periodically varying
width�.6,8�a� However, in a tube formed by cylindrical com-
partments, dependences of the effective mobility and diffu-
sion coefficient on the driving force are qualitatively differ-
ent. In such a tube �eff�����eff�0�, and the effective
mobility is a monotonically decreasing function of the driv-
ing force.5�h�,9�a� The effective diffusion coefficient in such a
tube monotonically increases with the driving force and di-

verges as the driving force tends to infinity; its large-F
asymptotic behavior is given by Deff�F�	F2.5�h�

A strong driving force induces localization of the particle
in the cylinder connecting the openings �Fig. 1�c��. To study
this effect, we computed the mean times spent by the particle
outside �out� and inside �in� the cylinder, �
out�F�	 and
�
in�F�	. We use these times and the ratio of the fractions of
the compartment volume outside and inside the cylinder,
Vout /Vin=2�R2−a2� / �3a2� to introduce function w�F�,

w�F� =
�
out�F�	Vin

�
in�F�	Vout
, �2.1�

which characterizes the degree of localization. At F=0 be-
cause of the ergodicity the ratio of the mean times is identi-
cal to the volume ratio,

�
out�0�	
�
in�0�	

=
Vout

Vin
. �2.2�

Therefore, w�0�=1. Dependences presented in Fig. 2�c�
show that functions w�F� monotonically decrease from unity
to zero when the driving force increases from zero to infinity.
The fact that w�F� tends to zero as F→� implies localiza-
tion of the particle in the cylinder connecting the openings
�Fig. 1�c��. The results presented in Fig. 2�c� show how the
degree of localization depends on the driving force at differ-
ent values of the opening radius. Similar localization induced
by the driving force has been reported in quasi-two-
dimensional systems with periodic entropy barriers �slits of
periodically varying width�.6�b�,6�e�

III. TRANSIT TIME

One can gain additional insight into the effect of the
driving force on the particle motion in the tube by analyzing
the transit time of the particle between neighboring openings.
This is the goal of the present section.

A. Mean transit time at F=0

Several approximate formulas for the mean transit time
between neighboring openings �
�0�	 can be obtained at F
=0 using different approaches to the problem. When the
openings are small �high entropy barriers� the mean transit
time is given by the formula suggested by Berezhkovskii,
Zitserman, and Shvartsman5�a�,5�b� �BZS�, �
�0�	BZS

=Vcomp / �4D0a�, where Vcomp is the volume of the compart-
ment. Since Vcomp= �2�R3 /3��2+a2 /R2��1−a2 /R2, we ob-
tain

�
�0�	BZS =
�R3

6aD0

2 +

a2

R2��1 −
a2

R2 . �3.1�

This formula is asymptotically exact as a→0. In this limit-
ing case, the formula takes the form �
�0�	BZS

=�R3 / �3aD0�, which was used in Ref. 5�a� and 5�b�.
One can evaluate the mean transit time at moderate-to-

large openings �low-to-moderate entropy barriers� using dif-
ferent versions of the Fick–Jacobs equation. Conventional
Fick–Jacobs �FJ� equation14 leads to
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FIG. 2. Dependences of the effective mobility �a�, diffusion coefficient �b�,
and function w�F� defined in Eq. �2.1� �c� on the driving force obtained from
Brownian dynamics simulations. Different symbols show the results found
at three different values of the opening radius.
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�
�0�	FJ =
R2

3D0

2 +

a2

R2��1 −
a2

R2 ln
1 + �1 − a2/R2

1 − �1 − a2/R2
.

�3.2�

Using the generalized Fick–Jacobs equation with the
position-dependent diffusion coefficient suggested by
Zwanzig1 �Zw�,

DZw�x� =
D0

1 + �dr�x�/dx�2/2
, �3.3�

where r�x� is the tube radius as a function of the x-coordinate
measured along the centerline of the tube, one can obtain

�
�0�	Zw =
R4

6a2D0

2 +

a2

R2��1 −
a2

R2

���1 −
a2

R2 +
3a2

2R2 ln
1 + �1 − a2/R2

1 − �1 − a2/R2 . �3.4�

If the position-dependent diffusion coefficient in the gener-
alized Fick–Jacobs equation is given by the formula sug-
gested by Reguera and Rubi2 �RR�,

DRR�x� =
D0

�1 + �dr�x�/dx�2
, �3.5�

one can obtain the following formula for the mean transit
time:

�
�0�	RR =
2R3

3aD0

2 +

a2

R2�
1 −
a2

R2� , �3.6�

In Table I, we compare predictions for the mean transit
time given by different formulas, Eqs. �3.1�, �3.2�, �3.4�, and
�3.6� with the mean transit time �
�0�	 obtained from Brown-
ian dynamics simulations. Comparison is made at the three
values of the opening radius. One can see excellent agree-
ment between �
�0�	 and �
�0�	BZS at a /R=0.1 and good
agreement between �
�0�	 and both �
�0�	BZS and �
�0�	RR at
a /R=0.3 and 0.5.

B. Effect of the driving force

In the presence of the driving force, the mean transit
time, �
�F�	 decreases compared to its value at F=0, �
�0�	.
As F→�, the mean transit time tends zero. The asymptotic
behavior of �
�F�	 at large values of the driving force is
given by the ratio l /veff�F�. In this limiting case, veff�F� is
equal to �0F, and we have

�
�R�	 →
l

�0F
=

2�R2 − a2

�0F
, F → � . �3.7�

This dependence is inherent in biased diffusion of a particle
in a tube of constant diameter at sufficiently large driving
force. The decrease of the mean transit time in the presence
of the driving force is illustrated in Fig. 3 in which we pre-
sented the ratios �
�F�	 / �
�0�	 obtained from simulations at
the three values of the opening radius. Dashed lines represent
the large-F asymptotic behavior of the ratios,

�
�F�	
�
�0�	

=
2�R2 − a2

�0F�
�0�	
, F → � . �3.8�

The results presented in Fig. 3 show that the smaller is the
radius of the openings, the larger values of the driving force
are required for transition of the ratio to its asymptotic form,
Eq. �3.8�.

The probability density of the transit time, ��
 �F�, is a
bell-shaped function. In Fig. 4, we show ��
 �0� obtained
from Brownian dynamics simulations at the three values of
the opening radius. The distribution bell shape gets narrower
as the driving force increases. As F→�, the probability den-
sity tends to the delta function centered at �t�F�	 given in Eq.
�3.7�,

��
�F� → 

 −
2�R2 − a2

�0F
�, F → � . �3.9�

As a consequence, the nth moment of the transit time �
n�F�	
tends to �
�F�	n. The moment ratios presented in Tables
II–IV illustrate the narrowing of the distribution of the transit
time in tubes formed by spherical compartments with differ-
ent connecting openings. These results show that the smaller
is the opening radius, the slower the probability density ap-
proaches its asymptotic form, Eq. �3.9�.

The convergence of the moment ratio to unity at large
values of the driving force, Tables II–IV, is in sharp contrast
with the divergence of the similar ratios of the transit time
moments in tubes formed by cylindrical compartments.5�h� In

TABLE I. The ratios of the mean transit times given in Eqs. �3.1�, �3.2�,
�3.4�, and �3.6� to this time obtained from Brownian dynamics simulations.
The ratios are computed at three different values of the opening radius.

a /R �
	BZS / �
�0�	 �
	RR / �
�0�	 �
	Zw / �
�0�	 �
	FJ / �
�0�	

0.1 0.99 1.26 3.43 0.37
0.3 0.92 1.12 1.43 0.66
0.5 0.97 1.07 1.15 0.81
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FIG. 3. The mean transit time between neighboring openings as a function
of the driving force. Different symbols show the result obtained from
Brownian dynamics simulations at three different values of the opening
radius. Dashed lines show the asymptotic behavior at large driving force,
Eq. �3.8�.
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such tubes when F is large enough, the probability density of
the transit time has a slowly decaying tale. The tale is due to
the intermittency in the particle transitions between neigh-
boring openings. Because of this tale, the moment ratio di-
verges as F→�. The large-F asymptotic behavior of the
moment ratio is given by �
n�F�	 / �
�F�	n	Fn−1.5�h� Thus, the
difference between the tubes formed by spherical and cylin-
drical compartments manifests itself not only in qualitatively
different behavior of the effective mobilities and diffusion
coefficients considered as functions of the driving force. The
difference also manifests itself in how the driving force af-
fects the particle transit time between the neighboring open-
ings.

IV. CONCLUDING REMARKS

Having in hand a formula for the mean transit time in the
absence of the driving force, �
�0�	, Eq. �3.1� or Eq. �3.6�,
one can find the effective diffusion coefficient at F=0 using
the relation Deff�0�= l2 / �2�
�0�	�. Then one can find the
small-F limiting value of the effective mobility using the
Einstein relation, �eff�0�=�Deff�0�. The large-F limiting val-
ues of the effective mobility and diffusion coefficient, �0 and
D0 also satisfy the Einstein relation, �0=�D0. However, in

between the two limits, the Einstein relation is not fulfilled,
and the ratio �eff�F� / ��Deff�F�� may be much smaller than
unity. This is illustrated in Fig. 5 where we have used �eff�F�
and Deff�F� obtained from our Brownian dynamics simula-
tions.

Introducing the notation kBTeff�F� for the ratio of the
effective diffusion coefficient to the effective mobility,
Deff�F� /�eff�F�=kBTeff�F�, where Teff�F� can be interpreted
as an effective temperature that depends on the driving force,
we can write the ratio �eff�F� / ��Deff�F�� as
�eff�F� / ��Deff�F��=T /Teff�F�. The results presented in Fig. 5
show that the effective temperature is a nonmonotonic func-
tion of the driving force that approaches real temperature T
as F→0 and �. In between, the effective temperature may
be much higher than the real temperature. The smaller is the
opening radius, the larger is the maximum value of Teff�F�,
and the stronger driving force is required to reach the maxi-
mum. Similar nonmonotonic dependence of the effective
temperature has been reported in quasi-two-dimensional sys-
tems with periodic entropy barriers �slits of periodically
varying width�.6�e�

In summary, in the present paper we report on a detailed
numerical study of the driving force effect on the effective
mobility and diffusion coefficient of a point Brownian par-
ticle in a tube formed by identical spherical compartments.
We also study localization of the particle in the central part
of the tube induced by the driving force, as well as how the
driving force affects the transit time between neighboring
openings. We found that the driving force effect on transport
in tubes formed by spherical compartments in many respects
is similar to that on transport in one-dimensional regular

TABLE II. The ratios of the transit time moments as functions of the driving
force. The moments are obtained from Brownian dynamics simulations run
in the tube formed by spherical compartments with the opening radius equal
to 0.1R.

�FR �
�F�2	 / �
�F�	2 �
�F�3	 / �
�F�	3 �
�F�4	 / �
�F�	4

0 1.91 5.50 20.91
1 1.88 5.23 19.08

10 1.39 2.68 6.83
102 1.09 1.33 1.81
103 1.01 1.05 1.12
104 1.00 1.00 1.00
105 1.00 1.00 1.00

TABLE III. The ratios of the transit time moments as functions of the
driving force. The moments are obtained from Brownian dynamics simula-
tions run in the tube formed by spherical compartments with the opening
radius equal to 0.3R.

�FR �
�F�2	 / �
�F�	2 �
�F�3	 / �
�F�	3 �
�F�4	 / �
�F�	4

0 1.79 4.81 17.16
1 1.75 4.57 15.84

10 1.18 1.68 2.82
102 1.02 1.08 1.19
103 1.00 1.00 1.01
104 1.00 1.00 1.00
105 1.00 1.00 1.00

TABLE IV. The ratios of the transit time moments as functions of the
driving force. The moments are obtained from Brownian dynamics simula-
tions run in the tube formed by spherical compartments with the opening
radius equal to 0.5R.

�FR �
�F�2	 / �
�F�	2 �
�F�3	 / �
�F�	3 �
�F�4	 / �
�F�	4

0 1.73 4.47 15.45
1 1.67 4.09 13.21

10 1.14 1.51 2.29
102 1.01 1.05 1.10
103 1.00 1.00 1.00
104 1.00 1.00 1.00
105 1.00 1.00 1.00
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FIG. 4. The probability density of the transit time between neighboring
openings in the absence of the driving force at the three values of the
opening radius: circles, squares, and triangles correspond to the opening
radii equal to 0.1R, 0.3R, and 0.5R, respectively. The arrows indicate corre-
sponding values of D0�
�0�	 /R2.

134102-5 Biased diffusion in tubes J. Chem. Phys. 133, 134102 �2010�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



�nonentropy� potentials13 and in quasi-two-dimensional sys-
tems with periodic entropy potentials.6,8 However, the effect
differs qualitatively from that in tubes formed by identical
cylindrical compartments.5�h�,9�a�
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